
The Word Services Apple Event Suite
Michael D. Crawford

Product Development Manager
Working Software, Inc.

Abstract

The Word Services Apple Event Suite allows any application to link to a speller, grammar checker or other text service
as if it was a built-in menu item. Working Software developed the protocol in cooperation with our competitors in the
spelling business, as well as several grammar checker, database and word processor publishers, and Apple Computer,
Inc. It is probably the simplest useful thing that a developer can do with Apple Events.

Word Services is designed to be very easy for client programs to implement – the client (or word processor) needs only
to send a single Apple Event to a server program (or spellchecker) and then resume its event loop. The server takes
over control of the protocol, retrieving and changing text in the client program’s document by using a small subset of
Core Suite Apple Events. The complete source code to Writeswell Jr. will be distributed along with the protocol
specification. Writeswell Jr. is a simple word processor that supports Word Services, and is provided as an example
that developers may use to add support for the protocol to their own applications.

Word Services applications have been shipping for over a year and a half. Spellers are available in a number of
languages, and client programs ranging from a curriculum planner with a total of ten users to a major word processor
have adopted the protocol. I will reflect on the long process of developing and promoting an industry standard
protocol.

I. Introduction

The Word Services Apple Event Suite allows any
application to link to a speller, grammar checker or other
text service as if it is a built–in menu item. I will tell you
how Word Services works and why you should support
the protocol in your own applications. I will give you
some examples of existing, shipping implementations.
Now that Word Services has been in the market for over
a year and a half, I will discuss what I have learned from
developing and promoting the protocol. I have the hope,
in doing so, that others will benefit from our difficult,
though personally satisfying experience.

When System 7 was released at the 1991 World Wide
Developer’s Conference it was my first WWDC on my first
job as a Macintosh developer. System 7 provides us
developers with many new opportunities, with many new
tools for application development, but in 1991 System 7
still required hard work from developers to be complete:
hard work to develop the Apple Event protocols to allow
programs to work together, and to write the programs

that will use the protocols.

I came to the conference with the task of developing a
spellchecking protocol. I meant to meet the other
spellchecker vendors and start working with them. I
soon discovered that several grammar checker vendors
had the same idea, and several word processor, database
and spreadsheet developers wished to work with us as
well. The essential features of the protocol were hashed
out over a sushi dinner during the developer’s
conference, hosted by my employer, Dave Johnson. This
was a fine experience: competitors out for a night on the
town, working together towards a common purpose.

1 The Word Services Apple Event Suite

We decided the bulk of the effort to implement the
protocol must be the responsibility of the “server”
application – that is, the speller or grammar checker
developer should do the hardest work. The protocol
should be easy for “client” application developers to
implement. This is required for widespread adoption by
word processor, database and communications program
developers. These developers wish to focus their
attention on the central purpose of their programs. They
do not wish to devote expensive resources or time–
consuming effort to adding a feature that is not essential
to their product.

This decision has been a successful one. The amount of
time required to implement Word Services in a client
program has ranged from as little as two hours to a
maximum of two weeks.

I imposed a second requirement on Word Services: the
protocol had to be a practical one, that got finished in a
reasonably short amount of time, and got real products
into the market that customers would actually purchase
and use. There were many requests to add features to
Word Services to suit some particular application, but I
generally denied these requests unless they fit this
criterion. I feel this is why our protocol is succeeding
where others have already failed.

Why should you support Word Services in your
application? If you are a client application developer, the
protocol:

• allows you to add features such as spellchecking
without debugging someone else’s OEM code.

• allows you to provide for these features for free. We
even give away free example source code.

• allows your users to save disk space. They no longer
need several different spelling dictionaries, a different
one for each program.

• provides your users with a single user interface among
several different programs. The speller will appear the
same no matter what application it is used in.

• allows your users to pick and choose their favorite
services, in the language that they wish to use.

If you are a server program developer, the protocol:

• allows you to work with new applications, and new
document formats, without any further work on your
part. Speller developers no longer need update their
programs to support new file formats.

• allows you to keep your source code private.

The protocol is public. No license fee and no
nondisclosure agreement is required to use the protocol,
or to use the sample code provided in the Word Services
Software Development Kit. The Word Services SDK is
available free from Working Software, Inc.

While several server applications have been developed
independently, Working Software considers the internal
operation of our Spellswell 7 application a proprietary
trade secret. This means that other speller publishers
must do the same hard work we did to write a Word
Services server program. I will concentrate on the client
side of the protocol in this paper. It is not impossible to
write a server application – it merely requires more work
than a client application.

II. How it Works

I will give a simple description of Word Services. Do not
let the protocol specification document scare you: the
entire Word Services specification is long and detailed,
and really describes four closely related protocols: the
server–interface Word Services protocol, the client–
interface protocol, the batch protocol and the interactive
protocol.1

So far no one has implemented the interactive Word
Services protocol. I will not discuss it further here,
except to say that we will implement it only if we receive
a commitment to support it from a major client program
vendor.

A form of the client–interface protocol has been
implemented by the Communicate! terminal emulator
from Mark/Space Softworks. It is especially suited for

1Crawford, Michael, et. al. “The Word Services Apple Event Suite,” Word Services Software Development Kit, Working
Software, Inc. 1994.
2 The Word Services Apple Event Suite

terminal emulators because they have read–only text: it
makes no sense to use the Set Data event to change text
that has scrolled by on the screen, or is being edited by a
mainframe text editor such as vi or emacs.

3 The Word Services Apple Event Suite

We are concerned mainly with the “server interface batch
mode” protocol. This means that the user interface, for
example the “Skip or Replace” dialog for a speller, is
provided by the server application. By “batch mode” we
mean that the text is checked in bulk when the user
requests it, rather than continuously as she types.

This is the essence of Word Services: send a request for
batch processing to the server. Include a list of text
blocks with the request. Resume your event loop. The
server requests the contents of each text block, then
changes strings of characters in each text block. When it
is done, the server may quit, or may stay running and
require the user to bring the client application to the
front.

There are some issues to be understood, such as how to
find the server initially, and how to create the list of text
blocks. There are optional features, such as the use of
background highlighting of erroneous text, and there are
two different ways that the list of text blocks may be
provided, but this explains the most important
components of the protocol.

Object Specifiers

We must clearly understand “object specifiers.”

Object specifiers are used in the Apple Object Model to
denote, or to point to data items within a program. They
serve the function that pointers do in C or Pascal, and the
function that file pathnames do in file systems: they let a
program know what data is the target of some operation.

Object specifiers are heirarchical constructions. They
are thus more akin to file pathnames than they are to
pointers. Because we know where the data is in some
structural space, rather than where it is in some absolute
address space, we can denote the data by giving a
heirarchy that locates the data within the program. I say
“a” heirarchy rather than “the” heirarchy because there
usually is more than one heirarchy that will work. One
chooses a heirarchy out of convenience, or to suit a
particular problem.

Examples of such heirarchies are:

the second text block
of the window named “foo”

of the application.

and

the third text block from the end
of the frontmost window

of the application.

When an application receives an object specifier, it
passes the specifier to the AEResolve function, which
converts the heirarchical description into a “token” for
the object. This changes a “name” for an object to a
“pointer” to the object. Object specifiers give locations
as a user might view them, with little or no regard to the
format that the data is stored in. The token generally
contains the address of the object, and the structure of
the token object itself is not specified by the Apple Event
Manager, as it must contain intimate knowledge of the
memory format of your data.

When a client application requests batch processing, the
list of text items that are sent is a list of object specifiers;
it is not the text itself. That is, we do not say “spellcheck
this text,” rather we say “spellcheck the blocks of text
that you can find here, and here, and here.”

After a server receives a batch request, it picks out the
first object specifier in the list and sends the client a Get
Data event to get the first block of text. If the server is a
spellchecker, and the user chooses to replace a word, the
server creates a new object specifier which uses this first
object specifier as a container. It might look something
like this:

characters 30 through 25 from the end
of the second text block

of the window named “foo”
of the application.

The server then uses this object specifier in a Set Data
event to replace the text of the erroneous word.

Why do we say “from the end?” Why do we say “the
second text block” in our example when this is the first
text block in the list?

4 The Word Services Apple Event Suite

The list of text blocks does not necessarily give each text
block in the entire document; instead it gives the
specifiers for each text block that the user actually
wishes to process. How this is done is left up to the
client application developer, but I suggest that you
process the entire document if there is no user selection,
and process each paragraph that contains such a
selection if one exists. This allows the user to choose
different blocks of text to be submitted to different
servers, or to spellcheck only the text that has been
recently edited.

We give our ranges from the end of the text block
because the length of the block may change when we
correct the text. For example, if the correct the sentence
“The redd dogg barks,” we will alter the length after we
change “redd” but before we change “dogg.” A
subsequent correction has the risk of changing the wrong
characters.

A server could keep track of the offsets, but it is simpler
to use object specifiers that are relative to the end of the
container. This are given as negative integers; character
-5 is the fifth from the end.

Finally, we must understand the formRange type of
object specifier. We can use any of several different “key
forms” at each level of our heirarchy. For example,
formAbsolutePosition gives a position as a count from the
beginning or end. FormName specifies an object by its
name: “window named Foo.” A formRange specifier uses
two object specifiers recursively; one is a specifier for the
beginning of the range, the other for the end of the
range.

Because of this recursive use of object specifiers for
character ranges, your “object resolution” functions must
call AEResolve recursively when they find a formRange
specifier. Examples of this are given in the Word
Services Suite specification, and in the Word Services
SDK.

The clearest technique I have seen for handling Apple
Events is the "Object First Approach" described by
Richard Clark.2

Registering a Service

How do we start up a Word Services connection? We
must register each service with each client application.

It would be nice to have a systemwide registry, but at the
time Word Services was developed I could see no
practical way to handle this. It would be best to do it
within the Macintosh System software, but Apple’s
engineer’s were busy doing other things. Since we
decided to use the way that would get to market, rather
than the most aesthetically pleasing way, we chose to
leave the registration up to each client developer.

(Of course, sample code is given in the Word Services
SDK. You can lift it right out of Writeswell Jr. if you like.)

There are four steps to register a service:

• locate the service,

• ask the service for its icon, location alias and menu
string,

• save these items in your preferences file,

• display the icon and menu string in your menu.

When a user selects the menu item from your menu,
launch the server using the location alias, and send it a
“Batch Process My Text” event.

There are two ways to locate the service. You may use
the PPCBrowser as Writeswell Jr. does, or you may use
the Open dialog box from the Standard File package.
There are advantages and disadvantages to each method.
SFGetFile is already familiar to the users and does not
require the server to be running already – the server is
launched by the client application after it is selected.
The PPCBrowser does not require the users to navigate
the file system via a complicated dialog, and only displays
applications that are Apple Event aware. Unfortunately
there is no simple way to show only Word Services
applications.

Once the server is located, use the Get Data event to ask
it for its pBatchMenuString property. This is a string
suitable for display in the client’s menu that describes

2Clark, Richard. “Apple Event Objects and You,” d e v e l o p, May 1992.
5 The Word Services Apple Event Suite

the service to be performed, such as “Check Spelling.”

6 The Word Services Apple Event Suite

Also ask the speller for its pMenuIcon, to display in the
menu as well. This prevents the user from being
confused by two servers that provide the same kind of
service, and also gives the client application nice “System
7” styling.

These must be saved in your preferences file, along with
the location alias that you may ask the server to supply
as well.

When you start up, scan your preferences file for these
saved menu strings and display them in your menu.
When the user selects one of these menu items, check to
see if the server is already running. If it is not, use the
saved alias to launch the server, then send it a “Batch
Process My Text” event, with an AEList containing object
specifiers for each text block you wish to check.

Be sure that you use an AEList, even if there is only one
text block. For example, if you wish to spellcheck your
entire document as a single block, you must create an
AEList containing a single object specifier. This is
different from the usual practice of placing a single
object specifier in the direct object of an event.

Send Table Specifier vs. Send Block Specifiers

Why do we require an AEList? In order to allow for
checking large structured documents such as databases,
we provide an optional method of specifying large
numbers of text blocks. I call the method I have already
described the “send block specifiers” method. This is
troublesome if there are large numbers of text blocks in
the document, as there will be for a database or
spreadsheet: Apple Events may contain no more than
64K of data, and each object specifier may be 200 to 300
bytes. A database easily exceeds the limit of 200 or so
text blocks that this imposes. The memory of the client,
the system, or the server may be exceeded as well.

To resolve this problem we have the “send table
specifier” method of requesting service. Instead of
explicitly sending a list of text blocks, the client may send
a single object specifier to a table that is maintained by
the client. The elements of this table are also object
specifiers. Each object specifier describes a single text
block to be checked.

One may not need to maintain this table as real object

specifiers. One can use any format for the table elements
and convert them to object specifiers as they are
requested.

To illustrate this concept, the Programmer Options dialog
in Writeswell Jr. allows you to use either method to
request service. Look at the sample code that refers to
this preference to see what it does.

Figure 1: The Programmer Options Dialog in
Writeswell Jr.

How does a server know which option is being used? The
server examines the data type of the direct object to the
batch event. If it is typeAEList then the Send Text
Specifiers method is used. If the direct object is of
typeObjectSpecifier then the Send Table Specifier
method is used: the server uses Get Data to get a table
element, then retrieves the text for that element.

Highlighting Erroneous Words

Traditional OEM spellers highlight erroneous words in
the original document as they are presented to the user.
This is provided for by Word Services, but it is an
optional feature. I highly recommend that you support
highlighting.

The speller requests that the client highlight some text
by setting the pBackgroundHilite property on a range of
characters to True. If the client supports this operation,
it returns noErr as the result of the Set Data event. If it
does not support background highlighting, the client
returns an error code.

7 The Word Services Apple Event Suite

A client might choose not to support background
highlighting because it requires displaying a selection
while the application is in the background. Many
applications are hardwired to turn off their selections
while in the background. If it is possible to implement
this property, then do so, but your application will work
as a Word Services client if you do not support
background highlighting.

If the server detects that the client does not support
background highlighting, it is the server’s responsibility
to display the erroneous word itself, with some
surrounding text to supply meaningful context to the
user.

III. Existing Implementations

A number of shipping applications now support Word
Services. Several more are under development. Among
the shipping applications are:

Writeswell Jr.

Writeswell Jr. is a simple “TeachText–like” word
processor with a Services menu:

Figure 2: Writeswell Jr.’s Services Menu

Working Software gives away Writeswell Jr. for free as a
demonstration of Word Services. We supply the source
code on the Word Services SDK to aid developers in
writing Word Services applications.

Info Depot

Info Depot, formerly Fair Witness, from Chena
Corporation was the first commercial Word Services
client. Jim Kaslik, President of Chena, was
extraordinarily helpful in reviewing the protocol and in
implementing it while the protocol was still being

revised. He was quite good natured about changing his
product to meet the changing specifications.

When developing a protocol it is important that someone
else implement it independently. Early releases of the
Word Services SDK had “compensating bugs” in
Writeswell Jr. and the development speller. It was not
until Jim wrote the code for his product that we
discovered that a bug in the speller was compensated by
a bug in Writeswell Jr., so that they both worked together
but were both slightly off the Apple Events specification.

Info Depot, an “information spreadsheet” has gone on to
support a rich implementation of AppleScript.

Eudora

The Eudora electronic mail program from QUALCOMM
Inc. implements Word Services in the commercial, 2.0
release. Previous shareware releases support
AppleScript but not Word Services. Word Services is one
of the distinguishing features of the commercial version.
We have just signed an agreement to bundle Spellswell 7
with Eudora.

It has a form of the “selection” checking, in that it will
check the header of a mail message if the cursor is on the
header; otherwise it will check the body of the mail
message.

WordPerfect

WordPerfect from WordPerfect Corporation has a nice
placement of the registration within its Preferences
dialog (Figure 3).

8 The Word Services Apple Event Suite

Figure 3: The WordPerfect Preferences Dialog

We worked quite closely with engineers from
WordPerfect throughout the early development of Word
Services, with extensive discussions about the possibility
of harmonizing the Word Services Suite with the Writing
Tools API, a cross–platform programming library that is
philosophically similar to Word Services.

Unfortunately we lost touch with the engineer that we
worked with when he was assigned to some other work
on the 3.0 release of WordPerfect. While Word Services
is supported by the product and is well–documented in
the manual, their implementation actually works quite
poorly. It is very slow, and the background highlighting
does not work unless one forces updates by dragging the
speller window around.

We have the hope that they will take interest in the
protocol again and do the programming required to make
it work well.

Omnis 7

Omnis 7, a database development program from Blyth
Software of England, was also an early adopter of Word
Services. It supports the protocol in a minimal way, in

that it requires the user to select a service from the PPC
Browser each time Word Services is used.

A Curriculum Planning Program

The University of Michigan has developed a curriculum
planning program which is used by ten teachers. We
found out about its existence after they had implemented
Word Services, when they ordered ten copies of
Spellswell 7.

While we have not made much money off of this program,
it is interesting in that it shows that Word Services
benefits small, vertical application developers by
providing a way to spellcheck documents without paying
large license fees. It also shows that the work required is
small enough to be worthwhile to a small developer. I
personally believe that we will make the most money by
selling small numbers of spellers to many small
developers, rather than selling many spellers to a single
large developer.

World Write

World Write, from World Software in France, is sold
largely in Eastern Europe. This Script Manager
compatible word processor is bundled with a Czech,
Hebrew and Russian speller, as well as the English
language Spellswell 7.

Services are available in a number of different languages.
Besides the spellers just mentioned, there is the English,
French and German MacPrimus speller from Applied
Technologies in Berlin, Germany, and MacKilavuz, a
Turkish speller written by Professor Akif Eyler of Bilkent
University in Ankara, Turkey.

Ralf Menssen, of Applied Technologies, and Dr. Eyler
were quite helpful in the early suite development.

We have an envelope addressing program called
Mailswell in development. Based on our QuickLetter
correspondence program, Mailswell adds an “Address
Envelope” menu item to client applications. A postal
address will be filtered from document text and printed
on preformatted stationery envelopes that are set up
within Mailswell.

IV. Creating a New Protocol
9 The Word Services Apple Event Suite

Now I come to what I find new and interesting in this
discussion. I have described the protocol many times,
from writing the specification itself, to discussing it at
innumerable meetings, to presenting it now at the
MacHack ‘94 Conference. I feel that the protocol is
mature enough that support for it is growing steadily.
Now (I hope) I can sit back and watch it grow, and reflect
upon this experience.

The questions I put to myself are: would I do it again?
Would I do it differently? What have I learned?

I may not have much real wisdom to shed here, but at
perhaps I can plant some seeds in your minds. If you are
contemplating the development of protocols yourselves,
perhaps you can start with what I have done and do it
better than I – or if not better, at least faster, with more
realistic expectations.

Would I do it again? If I had really understood how much
effort would be required, how long it would take for any
payoff to occur, I would have chosen to spend my time,
and my company’s money, doing something that was
more immediately profitable. I believe that I could have
chosen other projects that would have greater payoff.
Perhaps I would have chosen to do it later, after I had
grown some as an engineer and manager, and had a
deeper understanding of the industry.

I am glad that I have had this experience. This protocol
has made my work known in the industry as a whole, in a
way that would not be available if I just wrote products.
For some reason it is more important to me as a person
to gain a professional reputation than it is to make
money. This has been the personal reward of doing Word
Services: my work has become known, and we have not
made much money at all.

There is another personal reward to developing and
promoting this protocol. I have learned a great deal
about working with people. The technical work – the
programming and testing, the writing of the protocol, the
debugging – has been small in comparison to the work
with people that has been required, first to gain some
consensus on the protocol, and then to get it adopted.

In my early days of programming I was only interested in
the technical problems faced by programmers. To some
extent it did not matter to me whether a program was

ever finished. My concern was the challenge faced and
obstacles overcome. The effort required to get a
program “in the box” often lacks this technical
fascination.

As a young programmer I also generally avoided the
company of other people, preferring instead the
predictability and comfort of my computer. I believe this
is a trait shared by many programmers: for us the
computer is a comfortable substitute for the complexities
and frustrations of social interaction.

One cannot really be a good programmer if one cannot
relate to people. I believe that the most important trait a
programmer can possess is the ability to communicate
well. One must listen carefully to the needs of others,
translate these needs into technical ideas, judge these
ideas for feasibility and economics, than translate this
judgement into common language that any non–
programmer can understand.

One must also be willing to let go of the security of the
“technological sandbox” that we play in as young
programmers. To be really productive means to get a
program finished, even if it means devoting time to
uninteresting and repetitive work such as testing. In a
small company it means devoting time to activities
entirely outside development, such as sales, marketing
and technical support.

Thus, for me, Word Services provided the exercise and
training needed to grow from a youthful hacker to a
seasoned engineer.

Would I develop the protocol differently?

I am happy with the protocol itself, but I would change
the process by which I developed it. I would not have set
out on the process unless I had stronger commitments
from more companies than I did.

I found early on that many people expressed great
enthusiasm for the protocol. I had the hope that it would
be widely adopted within a year of the time that I began
working on it. I was disappointed to find that

10 The Word Services Apple Event Suite

this enthusiasm quickly evaporated when I asked others
to devote real labor to writing or reviewing the protocol
specification, or writing code for the Word Services SDK.

The protocol got developed because a small group of
fanatics were willing to devote their time and money far
out of proportion to the expected payoff. We did feel that
we were doing the right thing in a moral sense, but we
may have chosen wrong in a business sense – our time
might have been better spent working on other things.

Instead of taking off on my own to write the protocol, I
should have spent more time initially in building a group
of early adopters, getting all to commit to support the
protocol once written, and then starting to write the
protocol after this commitment had been made. This
would have been quite difficult, but may have resulted in
earlier commercial success.

What have I learned in writing Word Services?

I have learned to be more realistic in my expectations.

At the 1991 WWDC I met Sue Layman, program manager
of the Apple Events Developer’s Association. The AEDA
was established by Apple to coordinate protocol
development efforts, with the hope that it would
eventually be spun off as an independent organization.
Sue and I had great hope that many suites would be
developed and put to market in a year or two. It seems
that our youthful enthusiasm has been tempered by hard
experience: it has taken me three years to get the
protocol adopted, and Sue has since moved on to another
company, the AEDA now a thing of the past.

I think that we could all learn from the Internet Protocol
community. Protocol standards documents are called
“Requests For Comments,” and protocols are not
considered to be officially adopted until they have been in
real use for some period of time. No single company has

the power to establish a protocol on its own – this
requires real cooperation among competitors.

V. Conclusion

Word Services is adopted widely enough that I hope I can
sit back and watch it grow.

It is a useful protocol, and a simple one. It serves a real
need for users and for application developers. The
simplicity, and the presence of this demand combine to
give the protocol its success.

As we enter the age of the Information Superhighway
and the beginnings of compound document architectures
such as OpenDoc, we will all work more and more with
communications protocols. Whether we adopt protocols
or define protocols, or just use programs that support
protocols without our conscious knowledge,
communications protocols will be ever–present in our
lives as programmers and computer users.

I encourage you to adopt the Word Services Apple Event
Suite in your own programs, and if you contemplate the
writing of a new protocol, I encourage you to learn from
my experience.

Getting the Word Services SDK

To obtain the Word Services Software Development Kit,
send your postal address to Michael Crawford at:

CompuServe 76004,2072
AppleLink D1620
America Online WorkingSW
Internet 76004.2072@compuserve.com

Working Software, Inc.
P.O. Box 1844
Santa Cruz, CA 95061-1844

References

11 The Word Services Apple Event Suite

